420 research outputs found

    A Segmentation Algorithm for Characterizing Rise and Fall Segments in Seasonal Cycles: An Application to XCO2 to Estimate Benchmarks and Assess Model Bias

    Get PDF
    There is more useful information in the time series of satellite-derived column-averaged carbon dioxide (XCO2) than is typically characterized. Often, the entire time series is treated at once without considering detailed features at shorter timescales, such as nonstationary changes in signal characteristics amplitude, period and phase. In many instances, signals are visually and analytically differentiable from other portions in a time series. Each rise (increasing) and fall (decreasing) segment in the seasonal cycle is visually discernable in a graph of the time series. The rise and fall segments largely result from seasonal differences in terrestrial ecosystem production, which means that the segment's signal characteristics can be used to establish observational benchmarks because the signal characteristics are driven by similar underlying processes. We developed an analytical segmentation algorithm to characterize the rise and fall segments in XCO2 seasonal cycles. We present the algorithm for general application of the segmentation analysis and emphasize here that the segmentation analysis is more generally applicable to cyclic time series. We demonstrate the utility of the algorithm with specific results related to the comparison between satellite- and model-derived XCO2 seasonal cycles (20092012) for large bioregions across the globe. We found a seasonal amplitude gradient of 0.740.77 ppm for every 10 of latitude in the satellite data, with similar gradients for rise and fall segments. This translates to a southnorth seasonal amplitude gradient of 8 ppm for XCO2, about half the gradient in seasonal amplitude based on surface site in situ CO2 data (19 ppm). The latitudinal gradients in the period of the satellite-derived seasonal cycles were of opposing sign and magnitude (9 d per 10 latitude for fall segments and 10 d per 10 latitude for rise segments) and suggest that a specific latitude (2 N) exists that defines an inversion point for the period asymmetry. Before (after) the point of asymmetry inversion, the periods of rise segments are lesser (greater) than the periods of fall segments; only a single model could reproduce this emergent pattern. The asymmetry in amplitude and the period between rise and fall segments introduces a novel pattern in seasonal cycle analyses, but, while we show these emergent patterns exist in the data, we are still breaking ground in applying the information for science applications. Maybe the most useful application is that the segmentation analysis allowed us to decompose the model biases into their correlated parts of biases in amplitude, period and phase independently for rise and fall segments. We offer an extended discussion on how such information about model biases and the emergent patterns in satellite-derived seasonal cycles can be used to guide future inquiry and model development

    Sources and sinks of carbon dioxide in populous Asia

    Get PDF
    The recently concluded 21st Conference of the Parties (COP21) under the United Nations Framework Convention on Climate Change (UNFCCC) agreed to limit the increase in global temperature to less than 2oC above pre-industrial levels, with a more aspirational target of 1.5oC. Achieving these policy goals will require extraordinary input from the scientific community to define anthropogenic emission targets that account for natural biosphere sources and sinks of carbon dioxide (CO2), consistent with the climate targets. Asian countries, being densely populated and emerging global economic powers, are key players in defining future emission trajectories. The average fossil emissions from the three regions are estimated to be 2.4, 0.5 and 0.3 PgC yr-1 for East, South and Southeast Asia, respectively, and have increased by 67, 58 and 33% over the period 2003-2012. Here, we estimate land biosphere CO2 fluxes using: 1) simulations of terrestrial ecosystem models driven with global and regional atmospheric and climate observations and 2) atmospheric CO2 inverse models. Based on observations of atmospheric CO2 and inverse models, we show that on average over the period 2003 - 2012, the land biosphere (excluding fossil fuel emissions) in the three Asian regions in our study is either a CO2 sink (0.35 PgC yr-1 in East Asia) or source neutral (South and Southeast Asia). Consistently, our terrestrial ecosystem modeling suggests that the land biosphere of South and Southeast Asia were nearly neutral, but disagrees for East Asia

    Disentangling Climate and Disturbance Effects on Regional Vegetation Greening Trends

    Get PDF
    Productivity of northern latitude forests is an important driver of the terrestrial carbon cycle and is already responding to climate change. Studies ofthe satellite-derived Normalized Difference VegetationIndex (NDVI) for northern latitudes indicate recent changes in plant productivity. These detected greening and browning trends are often attributedto a lengthening of the growing season from warming temperatures. Yet, disturbance-recovery dynamics are strong drivers of productivity and can mask direct effects of climate change. Here, we analyze 1-km resolution NDVI data from 1989to 2014 for the northern latitude forests of the Greater Yellowstone Ecosystem for changes in plant productivity to address the following questions:(1) To what degree has greening taken place in the GYE over the past three decades? and (2) What is the relative importance of disturbance and climate in explaining NDVI trends? We found that the spatial extents of statistically significant productivity trends were limited to local greening and browning areas. Disturbance history, predominately fire disturbance, was a major driver of these detected NDVI trends. After accounting for fire-,insect-, and human-caused disturbances, increasing productivity trends remained. Productivity of northern latitude forests is generally considered temperature-limited; yet, we found that precipitation was a key driver of greening in the GYE

    Soil carbon pools in Swiss forests show legacy effects from historic forest litter raking

    Get PDF
    Globally, forest soils contain twice as much carbon as forest vegetation. Consequently, natural and anthropogenic disturbances affecting carbon accumulation in forest soils can alter regional to global carbon balance. In this study, we evaluate the effects of historic litter raking on soil carbon stocks, a former forest use which used to be widespread throughout Europe for centuries. We estimate, for Switzerland, the carbon sink potential in current forest soils due to recovery from past litter raking (‘legacy effect'). The year 1650 was chosen as starting year for litter raking, with three different end years (1875/1925/1960) implemented for this forest use in the biogeochemical model LPJ-GUESS. The model was run for different agricultural and climatic zones separately. Number of cattle, grain production and the area of wet meadow have an impact on the specific demand for forest litter. The demand was consequently calculated based on historical statistical data on these factors. The results show soil carbon pools to be reduced by an average of 17% after 310years of litter raking and legacy effects were still visible 130years after abandonment of this forest use (2% average reduction). We estimate the remaining carbon sink potential in Swiss forest due to legacy effects from past litter raking to amount to 158,000 tC. Integrating historical data into biogeochemical models provides insight into the relevance of past land-use practices. Our study underlines the importance of considering potentially long-lasting effects of such land use practices for carbon accountin

    Enhanced Response of Global Wetland Methane Emissions to the 2015-2016 El Nino-Southern Oscillation Events

    Get PDF
    Wetlands are thought to be the major contributor to interannual variability in the growth rate of atmospheric methane (CH4) with anomalies driven by the influence of the El Nio-Southern Oscillation (ENSO). Yet it remains unclear whether (i) the increase in total global CH4 emissions during El Nino versus La Nina events is from wetlands and (ii) how large the contribution of wetland CH4 emissions is to the interannual variability of atmospheric CH4. We used a terrestrial ecosystem model that includes permafrost and wetland dynamics to estimate CH4 emissions, forced by three separate meteorological reanalyses and one gridded observational climate dataset, to simulate the spatio-temporal dynamics of wetland CH4 emissions from 1980-2016. The simulations show that while wetland CH4 responds with negative annual anomalies during the El Nino events, the instantaneous growth rate of wetland CH4 emissions exhibits complex phase dynamics. We find that wetland CH4 instantaneous growth rates were declined at the onset of the 2015-2016 El Nino event but then increased to a record-high at later stages of the El Nino event (January through May 2016). We also find evidence for a step increase of CH4 emissions by 7.8+/-1.6 Tg CH4 per yr during 2007-2014 compared to the average of 2000-2006 from simulations using meteorological reanalyses, which is equivalent to a approx.3.5 ppb per yr rise in CH4 concentrations. The step increase is mainly caused by the expansion of wetland area in the tropics (30 deg S-30 deg N) due to an enhancement of tropical precipitation as indicated by the suite of the meteorological reanalyses. Our study highlights the role of wetlands, and the complex temporal phasing with ENSO, in driving the variability and trends of atmospheric CH4 concentrations. In addition, the need to account for uncertainty in meteorological forcings is highlighted in addressing the interannual variability and decadal-scale trends of wetland CH4 fluxes

    Comparing Tree‐Ring and Permanent Plot Estimates of Aboveground Net Primary Production in Three Eastern U.S. Forests

    Get PDF
    Forests account for a large portion of sequestered carbon, much of which is stored as wood in trees. The rate of carbon accumulation in aboveground plant material, or aboveground net primary productivity (aNPP), quantifies annual to decadal variations in forest carbon sequestration. Permanent plots are often used to estimate aNPP but are usually not annually resolved and take many years to develop a long data set. Tree rings are a unique and infrequently used source for measuring aNPP, and benefit from fine spatial (individual trees) and temporal (annual) resolution. Because of this precision, tree rings are complementary to permanent plots and the suite of tools used to study forest productivity. Here we evaluate whether annual estimates of aNPP developed from tree rings approximate estimates derived from colocated permanent plots. We studied a lowland evergreen (Howland, Maine), mixed deciduous (Harvard Forest, Massachusetts), and mixed mesophytic (Fernow, West Virginia) forest in the eastern United States. Permanent plots at the sites cover an area of 2–3 ha, and we use these areas as benchmarks indicative of the forest stand. We simulate random draws of permanent plot subsets to describe the distribution of aNPP estimates given a sampling area size equivalent to the tree-ring plots. Though mean tree-ring aNPP underestimates permanent plot aNPP slightly at Howland and Fernow and overestimates at Harvard Forest when compared with the entire permanent plot, it is within the 95% confidence interval of the random draws of equal-sized sampling area at all sites. To investigate whether tree-ring aNPP can be upscaled to the stand, we conducted a second random draw of permanent plot subsets simulating a twofold increase in sampling area. aNPP estimates from this distribution were not significantly different from results of the initial sampling area, though variance decreased as sampling area approaches stand area. Despite several concerns to consider when using tree rings to reconstruct aNPP (e.g., upscaling, allometric, and sampling uncertainties), the benefits are apparent, and we call for the continued application of tree rings in carbon cycle studies across a broader range of species diversity, productivity, and disturbance histories to fully develop this potential

    Comparing Tree-Ring And Permanent Plot Estimates Of Aboveground Net Primary Production In Three Eastern U.S. Forests

    Get PDF
    Forests account for a large portion of sequestered carbon, much of which is stored as wood in trees. The rate of carbon accumulation in aboveground plant material, or aboveground net primary productivity (aNPP), quantifies annual to decadal variations in forest carbon sequestration. Permanent plots are often used to estimate aNPP but are usually not annually resolved and take many years to develop a long data set. Tree rings are a unique and infrequently used source for measuring aNPP, and benefit from fine spatial (individual trees) and temporal (annual) resolution. Because of this precision, tree rings are complementary to permanent plots and the suite of tools used to study forest productivity. Here we evaluate whether annual estimates of aNPP developed from tree rings approximate estimates derived from colocated permanent plots. We studied a lowland evergreen (Howland, Maine), mixed deciduous (Harvard Forest, Massachusetts), and mixed mesophytic (Fernow, West Virginia) forest in the eastern United States. Permanent plots at the sites cover an area of 2-3 ha, and we use these areas as benchmarks indicative of the forest stand. We simulate random draws of permanent plot subsets to describe the distribution of aNPP estimates given a sampling area size equivalent to the tree-ring plots. Though mean tree-ring aNPP underestimates permanent plot aNPP slightly at Howland and Fernow and overestimates at Harvard Forest when compared with the entire permanent plot, it is within the 95% confidence interval of the random draws of equal-sized sampling area at all sites. To investigate whether tree-ring aNPP can be upscaled to the stand, we conducted a second random draw of permanent plot subsets simulating a twofold increase in sampling area. aNPP estimates from this distribution were not significantly different from results of the initial sampling area, though variance decreased as sampling area approaches stand area. Despite several concerns to consider when using tree rings to reconstruct aNPP (e.g., upscaling, allometric, and sampling uncertainties), the benefits are apparent, and we call for the continued application of tree rings in carbon cycle studies across a broader range of species diversity, productivity, and disturbance histories to fully develop this potential

    Enhanced Response of Global Wetland Methane Emissions to Recent El Nino-Southern Oscillation Events

    Get PDF
    Wetlands are thought to be the major contributor to interannual variability in the growth rate of atmospheric methane (CH4) with anomalies driven by the influence of the El Nino-Southern Oscillation (ENSO). Yet it remains unclear whether (i) the increase in total global CH4 emissions during El Nino versus La Ni na events is from wetlands and (ii) how large the contribution of wetland CH4 emissions is to the interannual variability of atmospheric CH4. We used a terrestrial ecosystem model that includes permafrost and wetland dynamics to estimate CH4 emissions, forced by three separate meteorological reanalyses and one gridded observational climate dataset, to simulate the spatio-temporal dynamics of wetland CH4 emissions from 1980-2016. The simulations show that while wetland CH4 responds with negative annual anomalies during the El Nino events, the instantaneous growth rate of wetland CH4 emissions exhibits complex phase dynamics. We find that wetland CH4 instantaneous growth rates were declined at the onset of the 2015-2016 El Nino event but then increased to a record-high at later stages of the El Nino event (January through May 2016). We also find evidence for a step increase of CH4 emissions by 7.8+/-1.6 Tg CH4 yr1 during 2007-2014 compared to the average of 2000-2006 from simulations using meteorological reanalyses, which is equivalent to a 3.5 ppb yr1 rise in CH4 concentrations. The step increase is mainly caused by the expansion of wetland area in the tropics (30S-30N) due to an enhancement of tropical precipitation as indicated by the suite of the meteorological reanalyses. Our study highlights the role of wetlands, and the complex temporal phasing with ENSO, in driving the variability and trends of atmospheric CH4 concentrations. In addition, the need to account for uncertainty in meteorological forcings is highlighted in addressing the interannual variability and decadal-scale trends of wetland CH4 fluxes
    corecore